Tag: nuclei

  • Novel quantum entanglement lets researchers spy on atomic nuclei: Study finds different types of particles can undergo quantum interference

    Researchers at the Brookhaven National Laboratory in New York have discovered a new kind of quantum entanglement using the Relativistic Heavy Ion Collider (RHIC). This phenomenon is described as an invisible link that connects distant objects, meaning that if two particles are entangled on a quantum level, measuring the quantum state of one particle reveals the quantum state of the other, no matter where it is in the universe. The study, published in the journal Science Advances, revealed that particles of all different kinds are able to interact with one another and interfere in a variety of patterns. This could potentially lead to advancements in quantum computing, quantum chemistry and astrophysics. The team hopes to extend their work by mapping the depths of other kinds of quantum objects. This work was supported by the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and other organizations.

    A new study has revealed that nuclear physicists have found a way to peer inside the deepest recesses of atomic nuclei using the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in New York. The team discovered a new kind of quantum entanglement, a phenomenon that connects distant objects and allows for the measurement of the quantum state of one particle to reveal the quantum state of the other. This could lead to advancements in quantum computing, quantum chemistry and astrophysics. The study was supported by the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and other organizations, and the team hopes to extend their work by mapping the depths of other kinds of quantum objects.



    Source link

    Join our Facebook page
    https://www.facebook.com/groups/www.pakistanaffairs.pk

  • Engineers discover a new way to control atomic nuclei as \’qubits\’: Using lasers, researchers can directly control a property of nuclei called spin, that can encode quantum information.

    اصولی طور پر، کوانٹم پر مبنی ڈیوائسز جیسے کہ کمپیوٹر اور سینسر بہت سے پیچیدہ کاموں کو انجام دینے کے لیے روایتی ڈیجیٹل ٹیکنالوجیز کو کافی حد تک پیچھے چھوڑ سکتے ہیں۔ لیکن ٹیک کمپنیوں کے ساتھ ساتھ تعلیمی اور سرکاری لیبز کی جانب سے زبردست سرمایہ کاری کے باوجود عملی طور پر ایسے آلات تیار کرنا ایک مشکل مسئلہ رہا ہے۔

    آج کے سب سے بڑے کوانٹم کمپیوٹرز میں ابھی بھی صرف چند سو \”کوبِٹس\” ہیں، جو ڈیجیٹل بٹس کے کوانٹم مساوی ہیں۔

    اب، MIT کے محققین نے qubits بنانے اور ڈیٹا کو پڑھنے اور لکھنے کے لیے انہیں کنٹرول کرنے کے لیے ایک نیا طریقہ تجویز کیا ہے۔ طریقہ، جو اس مرحلے پر نظریاتی ہے، جوہری مرکزے کے گھماؤ کو ماپنے اور کنٹرول کرنے پر مبنی ہے، جس میں قدرے مختلف رنگوں کے دو لیزرز سے روشنی کے شہتیر کا استعمال کیا جاتا ہے۔ ان نتائج کو جرنل میں شائع ہونے والے ایک مقالے میں بیان کیا گیا ہے۔ جسمانی جائزہ Xایم آئی ٹی کے ڈاکٹریٹ کے طالب علم ہاوئی سو، پروفیسرز جو لی اور پاولا کپیلارو، اور چار دیگر نے لکھا ہے۔

    جوہری گھماؤ کو طویل عرصے سے کوانٹم پر مبنی انفارمیشن پروسیسنگ اور کمیونیکیشن سسٹم کے لیے ممکنہ عمارت کے بلاکس کے طور پر تسلیم کیا جاتا رہا ہے، اور اسی طرح فوٹون، ابتدائی ذرات جو کہ الیکٹرو میگنیٹک ریڈی ایشن کے سمجھدار پیکٹ ہیں، یا \”کوانٹا\” ہیں۔ لیکن ان دونوں کوانٹم اشیاء کو ایک ساتھ کام کرنے کے لیے اکٹھا کرنا مشکل تھا کیونکہ ایٹم نیوکلی اور فوٹان بمشکل ہی آپس میں تعامل کرتے ہیں، اور ان کی فطری تعدد شدت کے چھ سے نو آرڈرز سے مختلف ہوتی ہے۔

    ایم آئی ٹی ٹیم کے تیار کردہ نئے عمل میں، آنے والی لیزر بیم کی فریکوئنسی میں فرق جوہری اسپن کی منتقلی کی تعدد سے میل کھاتا ہے، جوہری اسپن کو ایک خاص طریقے سے پلٹنے کے لیے جھٹکا دیتا ہے۔

    جوہری سائنس اور انجینئرنگ کے پروفیسر کیپیلارو کا کہنا ہے کہ \”ہمیں لیزرز سے آپٹیکل فوٹون کے ساتھ جوہری گھماؤ کو انٹرفیس کرنے کا ایک نیا، طاقتور طریقہ ملا ہے۔\” \”یہ نوول کپلنگ میکانزم ان کے کنٹرول اور پیمائش کو قابل بناتا ہے، جو اب جوہری گھماؤ کو کوبٹس کے طور پر استعمال کرنا ایک بہت زیادہ امید افزا کوشش بناتا ہے۔\”

    محققین کا کہنا ہے کہ یہ عمل مکمل طور پر قابل عمل ہے۔ مثال کے طور پر، کسی ایک لیزر کو موجودہ ٹیلی کام سسٹمز کی فریکوئنسی سے ملنے کے لیے ٹیون کیا جا سکتا ہے، اس طرح جوہری گھماؤ کو کوانٹم ریپیٹرز میں تبدیل کر کے طویل فاصلے تک کوانٹم کمیونیکیشن کو قابل بنایا جا سکتا ہے۔

    جوہری گھماؤ کو متاثر کرنے کے لیے روشنی کو استعمال کرنے کی پچھلی کوششیں بالواسطہ تھیں، جو اس نیوکلئس کے ارد گرد الیکٹران کے گھماؤ کے بجائے جوڑتی تھیں، جو کہ مقناطیسی تعامل کے باوجود نیوکلئس کو متاثر کرتی تھیں۔ لیکن اس کے لیے قریبی غیر جوڑی والے الیکٹران اسپن کی موجودگی کی ضرورت ہوتی ہے اور جوہری گھماؤ پر اضافی شور پیدا ہوتا ہے۔ نئے نقطہ نظر کے لئے، محققین نے اس حقیقت کا فائدہ اٹھایا کہ بہت سے نیوکللیوں میں ایک برقی کواڈروپول ہوتا ہے، جو ماحول کے ساتھ برقی جوہری کواڈروپولر تعامل کا باعث بنتا ہے۔ یہ تعامل روشنی سے متاثر ہو سکتا ہے تاکہ خود نیوکلئس کی حالت کو تبدیل کیا جا سکے۔

    لی کا کہنا ہے کہ \”جوہری اسپن عام طور پر بہت کمزور تعامل کرتا ہے۔ \”لیکن اس حقیقت کو استعمال کرتے ہوئے کہ کچھ نیوکلی میں الیکٹرک کواڈروپول ہوتا ہے، ہم اس سیکنڈ آرڈر، نان لائنر آپٹیکل اثر کو آمادہ کر سکتے ہیں جو براہ راست نیوکلیئر سپن سے جوڑتا ہے، بغیر کسی انٹرمیڈیٹ الیکٹران اسپن کے۔ یہ ہمیں نیوکلیئر سپن میں براہ راست ہیرا پھیری کرنے کی اجازت دیتا ہے۔\”

    دیگر چیزوں کے علاوہ، یہ مواد کے آاسوٹوپس کی درست شناخت اور یہاں تک کہ نقشہ سازی کی بھی اجازت دے سکتا ہے، جبکہ رامن سپیکٹروسکوپی، جو کہ مشابہ طبیعیات پر مبنی ایک اچھی طرح سے قائم شدہ طریقہ ہے، مواد کی کیمسٹری اور ساخت کی شناخت کر سکتی ہے، لیکن آاسوٹوپس نہیں۔ محققین کا کہنا ہے کہ اس صلاحیت میں بہت سی ایپلی کیشنز ہوسکتی ہیں۔

    جہاں تک کوانٹم میموری کا تعلق ہے، کوانٹم کمپیوٹنگ کے لیے اس وقت استعمال کیے جانے والے یا سمجھے جانے والے عام آلات میں ہم آہنگی کے اوقات ہوتے ہیں – یعنی ذخیرہ شدہ معلومات کو قابل اعتماد طریقے سے برقرار رکھا جا سکتا ہے – جو کہ ایک سیکنڈ کے چھوٹے حصوں میں ماپا جاتا ہے۔ لیکن نیوکلیئر اسپن سسٹم کے ساتھ، کوانٹم ہم آہنگی کے اوقات گھنٹوں میں ماپا جاتا ہے۔

    ٹیم کا کہنا ہے کہ چونکہ آپٹیکل فوٹوون طویل فاصلے تک مواصلات کے لیے فائبر آپٹک نیٹ ورکس کے ذریعے استعمال کیے جاتے ہیں، اس لیے ان فوٹونز کو براہ راست کوانٹم میموری یا سینسنگ ڈیوائسز میں جوڑنے کی صلاحیت نئے کمیونیکیشن سسٹمز میں اہم فوائد فراہم کر سکتی ہے۔ اس کے علاوہ، اثر طول موج کے ایک سیٹ کو دوسرے میں ترجمہ کرنے کا ایک موثر طریقہ فراہم کرنے کے لیے استعمال کیا جا سکتا ہے۔ سو کا کہنا ہے کہ \”ہم مائیکرو ویو فوٹونز اور آپٹیکل فوٹونز کی نقل و حمل کے لیے جوہری گھماؤ کے استعمال کے بارے میں سوچ رہے ہیں،\” انہوں نے مزید کہا کہ یہ دوسرے طریقوں کے مقابلے میں اس طرح کے ترجمے کے لیے زیادہ مخلصی فراہم کر سکتا ہے۔

    اب تک، کام نظریاتی ہے، لہذا اگلا مرحلہ اصل لیبارٹری کے آلات میں تصور کو نافذ کرنا ہے، شاید سب سے پہلے سپیکٹروسکوپک نظام میں۔ \”یہ اصولی تجربے کے لیے ایک اچھا امیدوار ہو سکتا ہے،\” سو کہتے ہیں۔ وہ کہتے ہیں کہ اس کے بعد، وہ کوانٹم ڈیوائسز جیسے میموری یا نقل و حمل کے اثرات سے نمٹیں گے۔

    اس ٹیم میں MIT میں Changhao Li، Guoqing Wang، Hua Wang، Hao Tang، اور Ariel Barr بھی شامل تھے۔



    Source link

  • Engineers discover a new way to control atomic nuclei as \’qubits\’: Using lasers, researchers can directly control a property of nuclei called spin, that can encode quantum information.

    اصولی طور پر، کوانٹم پر مبنی ڈیوائسز جیسے کہ کمپیوٹر اور سینسر بہت سے پیچیدہ کاموں کو انجام دینے کے لیے روایتی ڈیجیٹل ٹیکنالوجیز کو کافی حد تک پیچھے چھوڑ سکتے ہیں۔ لیکن ٹیک کمپنیوں کے ساتھ ساتھ تعلیمی اور سرکاری لیبز کی جانب سے زبردست سرمایہ کاری کے باوجود عملی طور پر ایسے آلات تیار کرنا ایک مشکل مسئلہ رہا ہے۔

    آج کے سب سے بڑے کوانٹم کمپیوٹرز میں ابھی بھی صرف چند سو \”کوبِٹس\” ہیں، جو ڈیجیٹل بٹس کے کوانٹم مساوی ہیں۔

    اب، MIT کے محققین نے qubits بنانے اور ڈیٹا کو پڑھنے اور لکھنے کے لیے انہیں کنٹرول کرنے کے لیے ایک نیا طریقہ تجویز کیا ہے۔ طریقہ، جو اس مرحلے پر نظریاتی ہے، جوہری مرکزے کے گھماؤ کو ماپنے اور کنٹرول کرنے پر مبنی ہے، جس میں قدرے مختلف رنگوں کے دو لیزرز سے روشنی کے شہتیر کا استعمال کیا جاتا ہے۔ ان نتائج کو جرنل میں شائع ہونے والے ایک مقالے میں بیان کیا گیا ہے۔ جسمانی جائزہ Xایم آئی ٹی کے ڈاکٹریٹ کے طالب علم ہاوئی سو، پروفیسرز جو لی اور پاولا کپیلارو، اور چار دیگر نے لکھا ہے۔

    جوہری گھماؤ کو طویل عرصے سے کوانٹم پر مبنی انفارمیشن پروسیسنگ اور کمیونیکیشن سسٹم کے لیے ممکنہ عمارت کے بلاکس کے طور پر تسلیم کیا جاتا رہا ہے، اور اسی طرح فوٹون، ابتدائی ذرات جو کہ الیکٹرو میگنیٹک ریڈی ایشن کے سمجھدار پیکٹ ہیں، یا \”کوانٹا\” ہیں۔ لیکن ان دونوں کوانٹم اشیاء کو ایک ساتھ کام کرنے کے لیے اکٹھا کرنا مشکل تھا کیونکہ ایٹم نیوکلی اور فوٹان بمشکل ہی آپس میں تعامل کرتے ہیں، اور ان کی فطری تعدد شدت کے چھ سے نو آرڈرز سے مختلف ہوتی ہے۔

    ایم آئی ٹی ٹیم کے تیار کردہ نئے عمل میں، آنے والی لیزر بیم کی فریکوئنسی میں فرق جوہری اسپن کی منتقلی کی تعدد سے میل کھاتا ہے، جوہری اسپن کو ایک خاص طریقے سے پلٹنے کے لیے جھٹکا دیتا ہے۔

    جوہری سائنس اور انجینئرنگ کے پروفیسر کیپیلارو کا کہنا ہے کہ \”ہمیں لیزرز سے آپٹیکل فوٹون کے ساتھ جوہری گھماؤ کو انٹرفیس کرنے کا ایک نیا، طاقتور طریقہ ملا ہے۔\” \”یہ نوول کپلنگ میکانزم ان کے کنٹرول اور پیمائش کو قابل بناتا ہے، جو اب جوہری گھماؤ کو کوبٹس کے طور پر استعمال کرنا ایک بہت زیادہ امید افزا کوشش بناتا ہے۔\”

    محققین کا کہنا ہے کہ یہ عمل مکمل طور پر قابل عمل ہے۔ مثال کے طور پر، کسی ایک لیزر کو موجودہ ٹیلی کام سسٹمز کی فریکوئنسی سے ملنے کے لیے ٹیون کیا جا سکتا ہے، اس طرح جوہری گھماؤ کو کوانٹم ریپیٹرز میں تبدیل کر کے طویل فاصلے تک کوانٹم کمیونیکیشن کو قابل بنایا جا سکتا ہے۔

    جوہری گھماؤ کو متاثر کرنے کے لیے روشنی کو استعمال کرنے کی پچھلی کوششیں بالواسطہ تھیں، جو اس نیوکلئس کے ارد گرد الیکٹران کے گھماؤ کے بجائے جوڑتی تھیں، جو کہ مقناطیسی تعامل کے باوجود نیوکلئس کو متاثر کرتی تھیں۔ لیکن اس کے لیے قریبی غیر جوڑی والے الیکٹران اسپن کی موجودگی کی ضرورت ہوتی ہے اور جوہری گھماؤ پر اضافی شور پیدا ہوتا ہے۔ نئے نقطہ نظر کے لئے، محققین نے اس حقیقت کا فائدہ اٹھایا کہ بہت سے نیوکللیوں میں ایک برقی کواڈروپول ہوتا ہے، جو ماحول کے ساتھ برقی جوہری کواڈروپولر تعامل کا باعث بنتا ہے۔ یہ تعامل روشنی سے متاثر ہو سکتا ہے تاکہ خود نیوکلئس کی حالت کو تبدیل کیا جا سکے۔

    لی کا کہنا ہے کہ \”جوہری اسپن عام طور پر بہت کمزور تعامل کرتا ہے۔ \”لیکن اس حقیقت کو استعمال کرتے ہوئے کہ کچھ نیوکلی میں الیکٹرک کواڈروپول ہوتا ہے، ہم اس سیکنڈ آرڈر، نان لائنر آپٹیکل اثر کو آمادہ کر سکتے ہیں جو براہ راست نیوکلیئر سپن سے جوڑتا ہے، بغیر کسی انٹرمیڈیٹ الیکٹران اسپن کے۔ یہ ہمیں نیوکلیئر سپن میں براہ راست ہیرا پھیری کرنے کی اجازت دیتا ہے۔\”

    دیگر چیزوں کے علاوہ، یہ مواد کے آاسوٹوپس کی درست شناخت اور یہاں تک کہ نقشہ سازی کی بھی اجازت دے سکتا ہے، جبکہ رامن سپیکٹروسکوپی، جو کہ مشابہ طبیعیات پر مبنی ایک اچھی طرح سے قائم شدہ طریقہ ہے، مواد کی کیمسٹری اور ساخت کی شناخت کر سکتی ہے، لیکن آاسوٹوپس نہیں۔ محققین کا کہنا ہے کہ اس صلاحیت میں بہت سی ایپلی کیشنز ہوسکتی ہیں۔

    جہاں تک کوانٹم میموری کا تعلق ہے، کوانٹم کمپیوٹنگ کے لیے اس وقت استعمال کیے جانے والے یا سمجھے جانے والے عام آلات میں ہم آہنگی کے اوقات ہوتے ہیں – یعنی ذخیرہ شدہ معلومات کو قابل اعتماد طریقے سے برقرار رکھا جا سکتا ہے – جو کہ ایک سیکنڈ کے چھوٹے حصوں میں ماپا جاتا ہے۔ لیکن نیوکلیئر اسپن سسٹم کے ساتھ، کوانٹم ہم آہنگی کے اوقات گھنٹوں میں ماپا جاتا ہے۔

    ٹیم کا کہنا ہے کہ چونکہ آپٹیکل فوٹوون طویل فاصلے تک مواصلات کے لیے فائبر آپٹک نیٹ ورکس کے ذریعے استعمال کیے جاتے ہیں، اس لیے ان فوٹونز کو براہ راست کوانٹم میموری یا سینسنگ ڈیوائسز میں جوڑنے کی صلاحیت نئے کمیونیکیشن سسٹمز میں اہم فوائد فراہم کر سکتی ہے۔ اس کے علاوہ، اثر طول موج کے ایک سیٹ کو دوسرے میں ترجمہ کرنے کا ایک موثر طریقہ فراہم کرنے کے لیے استعمال کیا جا سکتا ہے۔ سو کا کہنا ہے کہ \”ہم مائیکرو ویو فوٹونز اور آپٹیکل فوٹونز کی نقل و حمل کے لیے جوہری گھماؤ کے استعمال کے بارے میں سوچ رہے ہیں،\” انہوں نے مزید کہا کہ یہ دوسرے طریقوں کے مقابلے میں اس طرح کے ترجمے کے لیے زیادہ مخلصی فراہم کر سکتا ہے۔

    اب تک، کام نظریاتی ہے، لہذا اگلا مرحلہ اصل لیبارٹری کے آلات میں تصور کو نافذ کرنا ہے، شاید سب سے پہلے سپیکٹروسکوپک نظام میں۔ \”یہ اصولی تجربے کے لیے ایک اچھا امیدوار ہو سکتا ہے،\” سو کہتے ہیں۔ وہ کہتے ہیں کہ اس کے بعد، وہ کوانٹم ڈیوائسز جیسے میموری یا نقل و حمل کے اثرات سے نمٹیں گے۔

    اس ٹیم میں MIT میں Changhao Li، Guoqing Wang، Hua Wang، Hao Tang، اور Ariel Barr بھی شامل تھے۔



    Source link

  • Engineers discover a new way to control atomic nuclei as \’qubits\’: Using lasers, researchers can directly control a property of nuclei called spin, that can encode quantum information.

    اصولی طور پر، کوانٹم پر مبنی ڈیوائسز جیسے کہ کمپیوٹر اور سینسر بہت سے پیچیدہ کاموں کو انجام دینے کے لیے روایتی ڈیجیٹل ٹیکنالوجیز کو کافی حد تک پیچھے چھوڑ سکتے ہیں۔ لیکن ٹیک کمپنیوں کے ساتھ ساتھ تعلیمی اور سرکاری لیبز کی جانب سے زبردست سرمایہ کاری کے باوجود عملی طور پر ایسے آلات تیار کرنا ایک مشکل مسئلہ رہا ہے۔

    آج کے سب سے بڑے کوانٹم کمپیوٹرز میں ابھی بھی صرف چند سو \”کوبِٹس\” ہیں، جو ڈیجیٹل بٹس کے کوانٹم مساوی ہیں۔

    اب، MIT کے محققین نے qubits بنانے اور ڈیٹا کو پڑھنے اور لکھنے کے لیے انہیں کنٹرول کرنے کے لیے ایک نیا طریقہ تجویز کیا ہے۔ طریقہ، جو اس مرحلے پر نظریاتی ہے، جوہری مرکزے کے گھماؤ کو ماپنے اور کنٹرول کرنے پر مبنی ہے، جس میں قدرے مختلف رنگوں کے دو لیزرز سے روشنی کے شہتیر کا استعمال کیا جاتا ہے۔ ان نتائج کو جرنل میں شائع ہونے والے ایک مقالے میں بیان کیا گیا ہے۔ جسمانی جائزہ Xایم آئی ٹی کے ڈاکٹریٹ کے طالب علم ہاوئی سو، پروفیسرز جو لی اور پاولا کپیلارو، اور چار دیگر نے لکھا ہے۔

    جوہری گھماؤ کو طویل عرصے سے کوانٹم پر مبنی انفارمیشن پروسیسنگ اور کمیونیکیشن سسٹم کے لیے ممکنہ عمارت کے بلاکس کے طور پر تسلیم کیا جاتا رہا ہے، اور اسی طرح فوٹون، ابتدائی ذرات جو کہ الیکٹرو میگنیٹک ریڈی ایشن کے سمجھدار پیکٹ ہیں، یا \”کوانٹا\” ہیں۔ لیکن ان دونوں کوانٹم اشیاء کو ایک ساتھ کام کرنے کے لیے اکٹھا کرنا مشکل تھا کیونکہ ایٹم نیوکلی اور فوٹان بمشکل ہی آپس میں تعامل کرتے ہیں، اور ان کی فطری تعدد شدت کے چھ سے نو آرڈرز سے مختلف ہوتی ہے۔

    ایم آئی ٹی ٹیم کے تیار کردہ نئے عمل میں، آنے والی لیزر بیم کی فریکوئنسی میں فرق جوہری اسپن کی منتقلی کی تعدد سے میل کھاتا ہے، جوہری اسپن کو ایک خاص طریقے سے پلٹنے کے لیے جھٹکا دیتا ہے۔

    جوہری سائنس اور انجینئرنگ کے پروفیسر کیپیلارو کا کہنا ہے کہ \”ہمیں لیزرز سے آپٹیکل فوٹون کے ساتھ جوہری گھماؤ کو انٹرفیس کرنے کا ایک نیا، طاقتور طریقہ ملا ہے۔\” \”یہ نوول کپلنگ میکانزم ان کے کنٹرول اور پیمائش کو قابل بناتا ہے، جو اب جوہری گھماؤ کو کوبٹس کے طور پر استعمال کرنا ایک بہت زیادہ امید افزا کوشش بناتا ہے۔\”

    محققین کا کہنا ہے کہ یہ عمل مکمل طور پر قابل عمل ہے۔ مثال کے طور پر، کسی ایک لیزر کو موجودہ ٹیلی کام سسٹمز کی فریکوئنسی سے ملنے کے لیے ٹیون کیا جا سکتا ہے، اس طرح جوہری گھماؤ کو کوانٹم ریپیٹرز میں تبدیل کر کے طویل فاصلے تک کوانٹم کمیونیکیشن کو قابل بنایا جا سکتا ہے۔

    جوہری گھماؤ کو متاثر کرنے کے لیے روشنی کو استعمال کرنے کی پچھلی کوششیں بالواسطہ تھیں، جو اس نیوکلئس کے ارد گرد الیکٹران کے گھماؤ کے بجائے جوڑتی تھیں، جو کہ مقناطیسی تعامل کے باوجود نیوکلئس کو متاثر کرتی تھیں۔ لیکن اس کے لیے قریبی غیر جوڑی والے الیکٹران اسپن کی موجودگی کی ضرورت ہوتی ہے اور جوہری گھماؤ پر اضافی شور پیدا ہوتا ہے۔ نئے نقطہ نظر کے لئے، محققین نے اس حقیقت کا فائدہ اٹھایا کہ بہت سے نیوکللیوں میں ایک برقی کواڈروپول ہوتا ہے، جو ماحول کے ساتھ برقی جوہری کواڈروپولر تعامل کا باعث بنتا ہے۔ یہ تعامل روشنی سے متاثر ہو سکتا ہے تاکہ خود نیوکلئس کی حالت کو تبدیل کیا جا سکے۔

    لی کا کہنا ہے کہ \”جوہری اسپن عام طور پر بہت کمزور تعامل کرتا ہے۔ \”لیکن اس حقیقت کو استعمال کرتے ہوئے کہ کچھ نیوکلی میں الیکٹرک کواڈروپول ہوتا ہے، ہم اس سیکنڈ آرڈر، نان لائنر آپٹیکل اثر کو آمادہ کر سکتے ہیں جو براہ راست نیوکلیئر سپن سے جوڑتا ہے، بغیر کسی انٹرمیڈیٹ الیکٹران اسپن کے۔ یہ ہمیں نیوکلیئر سپن میں براہ راست ہیرا پھیری کرنے کی اجازت دیتا ہے۔\”

    دیگر چیزوں کے علاوہ، یہ مواد کے آاسوٹوپس کی درست شناخت اور یہاں تک کہ نقشہ سازی کی بھی اجازت دے سکتا ہے، جبکہ رامن سپیکٹروسکوپی، جو کہ مشابہ طبیعیات پر مبنی ایک اچھی طرح سے قائم شدہ طریقہ ہے، مواد کی کیمسٹری اور ساخت کی شناخت کر سکتی ہے، لیکن آاسوٹوپس نہیں۔ محققین کا کہنا ہے کہ اس صلاحیت میں بہت سی ایپلی کیشنز ہوسکتی ہیں۔

    جہاں تک کوانٹم میموری کا تعلق ہے، کوانٹم کمپیوٹنگ کے لیے اس وقت استعمال کیے جانے والے یا سمجھے جانے والے عام آلات میں ہم آہنگی کے اوقات ہوتے ہیں – یعنی ذخیرہ شدہ معلومات کو قابل اعتماد طریقے سے برقرار رکھا جا سکتا ہے – جو کہ ایک سیکنڈ کے چھوٹے حصوں میں ماپا جاتا ہے۔ لیکن نیوکلیئر اسپن سسٹم کے ساتھ، کوانٹم ہم آہنگی کے اوقات گھنٹوں میں ماپا جاتا ہے۔

    ٹیم کا کہنا ہے کہ چونکہ آپٹیکل فوٹوون طویل فاصلے تک مواصلات کے لیے فائبر آپٹک نیٹ ورکس کے ذریعے استعمال کیے جاتے ہیں، اس لیے ان فوٹونز کو براہ راست کوانٹم میموری یا سینسنگ ڈیوائسز میں جوڑنے کی صلاحیت نئے کمیونیکیشن سسٹمز میں اہم فوائد فراہم کر سکتی ہے۔ اس کے علاوہ، اثر طول موج کے ایک سیٹ کو دوسرے میں ترجمہ کرنے کا ایک موثر طریقہ فراہم کرنے کے لیے استعمال کیا جا سکتا ہے۔ سو کا کہنا ہے کہ \”ہم مائیکرو ویو فوٹونز اور آپٹیکل فوٹونز کی نقل و حمل کے لیے جوہری گھماؤ کے استعمال کے بارے میں سوچ رہے ہیں،\” انہوں نے مزید کہا کہ یہ دوسرے طریقوں کے مقابلے میں اس طرح کے ترجمے کے لیے زیادہ مخلصی فراہم کر سکتا ہے۔

    اب تک، کام نظریاتی ہے، لہذا اگلا مرحلہ اصل لیبارٹری کے آلات میں تصور کو نافذ کرنا ہے، شاید سب سے پہلے سپیکٹروسکوپک نظام میں۔ \”یہ اصولی تجربے کے لیے ایک اچھا امیدوار ہو سکتا ہے،\” سو کہتے ہیں۔ وہ کہتے ہیں کہ اس کے بعد، وہ کوانٹم ڈیوائسز جیسے میموری یا نقل و حمل کے اثرات سے نمٹیں گے۔

    اس ٹیم میں MIT میں Changhao Li، Guoqing Wang، Hua Wang، Hao Tang، اور Ariel Barr بھی شامل تھے۔



    Source link

  • Engineers discover a new way to control atomic nuclei as \’qubits\’: Using lasers, researchers can directly control a property of nuclei called spin, that can encode quantum information.

    اصولی طور پر، کوانٹم پر مبنی ڈیوائسز جیسے کہ کمپیوٹر اور سینسر بہت سے پیچیدہ کاموں کو انجام دینے کے لیے روایتی ڈیجیٹل ٹیکنالوجیز کو کافی حد تک پیچھے چھوڑ سکتے ہیں۔ لیکن ٹیک کمپنیوں کے ساتھ ساتھ تعلیمی اور سرکاری لیبز کی جانب سے زبردست سرمایہ کاری کے باوجود عملی طور پر ایسے آلات تیار کرنا ایک مشکل مسئلہ رہا ہے۔

    آج کے سب سے بڑے کوانٹم کمپیوٹرز میں ابھی بھی صرف چند سو \”کوبِٹس\” ہیں، جو ڈیجیٹل بٹس کے کوانٹم مساوی ہیں۔

    اب، MIT کے محققین نے qubits بنانے اور ڈیٹا کو پڑھنے اور لکھنے کے لیے انہیں کنٹرول کرنے کے لیے ایک نیا طریقہ تجویز کیا ہے۔ طریقہ، جو اس مرحلے پر نظریاتی ہے، جوہری مرکزے کے گھماؤ کو ماپنے اور کنٹرول کرنے پر مبنی ہے، جس میں قدرے مختلف رنگوں کے دو لیزرز سے روشنی کے شہتیر کا استعمال کیا جاتا ہے۔ ان نتائج کو جرنل میں شائع ہونے والے ایک مقالے میں بیان کیا گیا ہے۔ جسمانی جائزہ Xایم آئی ٹی کے ڈاکٹریٹ کے طالب علم ہاوئی سو، پروفیسرز جو لی اور پاولا کپیلارو، اور چار دیگر نے لکھا ہے۔

    جوہری گھماؤ کو طویل عرصے سے کوانٹم پر مبنی انفارمیشن پروسیسنگ اور کمیونیکیشن سسٹم کے لیے ممکنہ عمارت کے بلاکس کے طور پر تسلیم کیا جاتا رہا ہے، اور اسی طرح فوٹون، ابتدائی ذرات جو کہ الیکٹرو میگنیٹک ریڈی ایشن کے سمجھدار پیکٹ ہیں، یا \”کوانٹا\” ہیں۔ لیکن ان دونوں کوانٹم اشیاء کو ایک ساتھ کام کرنے کے لیے اکٹھا کرنا مشکل تھا کیونکہ ایٹم نیوکلی اور فوٹان بمشکل ہی آپس میں تعامل کرتے ہیں، اور ان کی فطری تعدد شدت کے چھ سے نو آرڈرز سے مختلف ہوتی ہے۔

    ایم آئی ٹی ٹیم کے تیار کردہ نئے عمل میں، آنے والی لیزر بیم کی فریکوئنسی میں فرق جوہری اسپن کی منتقلی کی تعدد سے میل کھاتا ہے، جوہری اسپن کو ایک خاص طریقے سے پلٹنے کے لیے جھٹکا دیتا ہے۔

    جوہری سائنس اور انجینئرنگ کے پروفیسر کیپیلارو کا کہنا ہے کہ \”ہمیں لیزرز سے آپٹیکل فوٹون کے ساتھ جوہری گھماؤ کو انٹرفیس کرنے کا ایک نیا، طاقتور طریقہ ملا ہے۔\” \”یہ نوول کپلنگ میکانزم ان کے کنٹرول اور پیمائش کو قابل بناتا ہے، جو اب جوہری گھماؤ کو کوبٹس کے طور پر استعمال کرنا ایک بہت زیادہ امید افزا کوشش بناتا ہے۔\”

    محققین کا کہنا ہے کہ یہ عمل مکمل طور پر قابل عمل ہے۔ مثال کے طور پر، کسی ایک لیزر کو موجودہ ٹیلی کام سسٹمز کی فریکوئنسی سے ملنے کے لیے ٹیون کیا جا سکتا ہے، اس طرح جوہری گھماؤ کو کوانٹم ریپیٹرز میں تبدیل کر کے طویل فاصلے تک کوانٹم کمیونیکیشن کو قابل بنایا جا سکتا ہے۔

    جوہری گھماؤ کو متاثر کرنے کے لیے روشنی کو استعمال کرنے کی پچھلی کوششیں بالواسطہ تھیں، جو اس نیوکلئس کے ارد گرد الیکٹران کے گھماؤ کے بجائے جوڑتی تھیں، جو کہ مقناطیسی تعامل کے باوجود نیوکلئس کو متاثر کرتی تھیں۔ لیکن اس کے لیے قریبی غیر جوڑی والے الیکٹران اسپن کی موجودگی کی ضرورت ہوتی ہے اور جوہری گھماؤ پر اضافی شور پیدا ہوتا ہے۔ نئے نقطہ نظر کے لئے، محققین نے اس حقیقت کا فائدہ اٹھایا کہ بہت سے نیوکللیوں میں ایک برقی کواڈروپول ہوتا ہے، جو ماحول کے ساتھ برقی جوہری کواڈروپولر تعامل کا باعث بنتا ہے۔ یہ تعامل روشنی سے متاثر ہو سکتا ہے تاکہ خود نیوکلئس کی حالت کو تبدیل کیا جا سکے۔

    لی کا کہنا ہے کہ \”جوہری اسپن عام طور پر بہت کمزور تعامل کرتا ہے۔ \”لیکن اس حقیقت کو استعمال کرتے ہوئے کہ کچھ نیوکلی میں الیکٹرک کواڈروپول ہوتا ہے، ہم اس سیکنڈ آرڈر، نان لائنر آپٹیکل اثر کو آمادہ کر سکتے ہیں جو براہ راست نیوکلیئر سپن سے جوڑتا ہے، بغیر کسی انٹرمیڈیٹ الیکٹران اسپن کے۔ یہ ہمیں نیوکلیئر سپن میں براہ راست ہیرا پھیری کرنے کی اجازت دیتا ہے۔\”

    دیگر چیزوں کے علاوہ، یہ مواد کے آاسوٹوپس کی درست شناخت اور یہاں تک کہ نقشہ سازی کی بھی اجازت دے سکتا ہے، جبکہ رامن سپیکٹروسکوپی، جو کہ مشابہ طبیعیات پر مبنی ایک اچھی طرح سے قائم شدہ طریقہ ہے، مواد کی کیمسٹری اور ساخت کی شناخت کر سکتی ہے، لیکن آاسوٹوپس نہیں۔ محققین کا کہنا ہے کہ اس صلاحیت میں بہت سی ایپلی کیشنز ہوسکتی ہیں۔

    جہاں تک کوانٹم میموری کا تعلق ہے، کوانٹم کمپیوٹنگ کے لیے اس وقت استعمال کیے جانے والے یا سمجھے جانے والے عام آلات میں ہم آہنگی کے اوقات ہوتے ہیں – یعنی ذخیرہ شدہ معلومات کو قابل اعتماد طریقے سے برقرار رکھا جا سکتا ہے – جو کہ ایک سیکنڈ کے چھوٹے حصوں میں ماپا جاتا ہے۔ لیکن نیوکلیئر اسپن سسٹم کے ساتھ، کوانٹم ہم آہنگی کے اوقات گھنٹوں میں ماپا جاتا ہے۔

    ٹیم کا کہنا ہے کہ چونکہ آپٹیکل فوٹوون طویل فاصلے تک مواصلات کے لیے فائبر آپٹک نیٹ ورکس کے ذریعے استعمال کیے جاتے ہیں، اس لیے ان فوٹونز کو براہ راست کوانٹم میموری یا سینسنگ ڈیوائسز میں جوڑنے کی صلاحیت نئے کمیونیکیشن سسٹمز میں اہم فوائد فراہم کر سکتی ہے۔ اس کے علاوہ، اثر طول موج کے ایک سیٹ کو دوسرے میں ترجمہ کرنے کا ایک موثر طریقہ فراہم کرنے کے لیے استعمال کیا جا سکتا ہے۔ سو کا کہنا ہے کہ \”ہم مائیکرو ویو فوٹونز اور آپٹیکل فوٹونز کی نقل و حمل کے لیے جوہری گھماؤ کے استعمال کے بارے میں سوچ رہے ہیں،\” انہوں نے مزید کہا کہ یہ دوسرے طریقوں کے مقابلے میں اس طرح کے ترجمے کے لیے زیادہ مخلصی فراہم کر سکتا ہے۔

    اب تک، کام نظریاتی ہے، لہذا اگلا مرحلہ اصل لیبارٹری کے آلات میں تصور کو نافذ کرنا ہے، شاید سب سے پہلے سپیکٹروسکوپک نظام میں۔ \”یہ اصولی تجربے کے لیے ایک اچھا امیدوار ہو سکتا ہے،\” سو کہتے ہیں۔ وہ کہتے ہیں کہ اس کے بعد، وہ کوانٹم ڈیوائسز جیسے میموری یا نقل و حمل کے اثرات سے نمٹیں گے۔

    اس ٹیم میں MIT میں Changhao Li، Guoqing Wang، Hua Wang، Hao Tang، اور Ariel Barr بھی شامل تھے۔



    Source link

  • Engineers discover a new way to control atomic nuclei as \’qubits\’: Using lasers, researchers can directly control a property of nuclei called spin, that can encode quantum information.

    اصولی طور پر، کوانٹم پر مبنی ڈیوائسز جیسے کہ کمپیوٹر اور سینسر بہت سے پیچیدہ کاموں کو انجام دینے کے لیے روایتی ڈیجیٹل ٹیکنالوجیز کو کافی حد تک پیچھے چھوڑ سکتے ہیں۔ لیکن ٹیک کمپنیوں کے ساتھ ساتھ تعلیمی اور سرکاری لیبز کی جانب سے زبردست سرمایہ کاری کے باوجود عملی طور پر ایسے آلات تیار کرنا ایک مشکل مسئلہ رہا ہے۔

    آج کے سب سے بڑے کوانٹم کمپیوٹرز میں ابھی بھی صرف چند سو \”کوبِٹس\” ہیں، جو ڈیجیٹل بٹس کے کوانٹم مساوی ہیں۔

    اب، MIT کے محققین نے qubits بنانے اور ڈیٹا کو پڑھنے اور لکھنے کے لیے انہیں کنٹرول کرنے کے لیے ایک نیا طریقہ تجویز کیا ہے۔ طریقہ، جو اس مرحلے پر نظریاتی ہے، جوہری مرکزے کے گھماؤ کو ماپنے اور کنٹرول کرنے پر مبنی ہے، جس میں قدرے مختلف رنگوں کے دو لیزرز سے روشنی کے شہتیر کا استعمال کیا جاتا ہے۔ ان نتائج کو جرنل میں شائع ہونے والے ایک مقالے میں بیان کیا گیا ہے۔ جسمانی جائزہ Xایم آئی ٹی کے ڈاکٹریٹ کے طالب علم ہاوئی سو، پروفیسرز جو لی اور پاولا کپیلارو، اور چار دیگر نے لکھا ہے۔

    جوہری گھماؤ کو طویل عرصے سے کوانٹم پر مبنی انفارمیشن پروسیسنگ اور کمیونیکیشن سسٹم کے لیے ممکنہ عمارت کے بلاکس کے طور پر تسلیم کیا جاتا رہا ہے، اور اسی طرح فوٹون، ابتدائی ذرات جو کہ الیکٹرو میگنیٹک ریڈی ایشن کے سمجھدار پیکٹ ہیں، یا \”کوانٹا\” ہیں۔ لیکن ان دونوں کوانٹم اشیاء کو ایک ساتھ کام کرنے کے لیے اکٹھا کرنا مشکل تھا کیونکہ ایٹم نیوکلی اور فوٹان بمشکل ہی آپس میں تعامل کرتے ہیں، اور ان کی فطری تعدد شدت کے چھ سے نو آرڈرز سے مختلف ہوتی ہے۔

    ایم آئی ٹی ٹیم کے تیار کردہ نئے عمل میں، آنے والی لیزر بیم کی فریکوئنسی میں فرق جوہری اسپن کی منتقلی کی تعدد سے میل کھاتا ہے، جوہری اسپن کو ایک خاص طریقے سے پلٹنے کے لیے جھٹکا دیتا ہے۔

    جوہری سائنس اور انجینئرنگ کے پروفیسر کیپیلارو کا کہنا ہے کہ \”ہمیں لیزرز سے آپٹیکل فوٹون کے ساتھ جوہری گھماؤ کو انٹرفیس کرنے کا ایک نیا، طاقتور طریقہ ملا ہے۔\” \”یہ نوول کپلنگ میکانزم ان کے کنٹرول اور پیمائش کو قابل بناتا ہے، جو اب جوہری گھماؤ کو کوبٹس کے طور پر استعمال کرنا ایک بہت زیادہ امید افزا کوشش بناتا ہے۔\”

    محققین کا کہنا ہے کہ یہ عمل مکمل طور پر قابل عمل ہے۔ مثال کے طور پر، کسی ایک لیزر کو موجودہ ٹیلی کام سسٹمز کی فریکوئنسی سے ملنے کے لیے ٹیون کیا جا سکتا ہے، اس طرح جوہری گھماؤ کو کوانٹم ریپیٹرز میں تبدیل کر کے طویل فاصلے تک کوانٹم کمیونیکیشن کو قابل بنایا جا سکتا ہے۔

    جوہری گھماؤ کو متاثر کرنے کے لیے روشنی کو استعمال کرنے کی پچھلی کوششیں بالواسطہ تھیں، جو اس نیوکلئس کے ارد گرد الیکٹران کے گھماؤ کے بجائے جوڑتی تھیں، جو کہ مقناطیسی تعامل کے باوجود نیوکلئس کو متاثر کرتی تھیں۔ لیکن اس کے لیے قریبی غیر جوڑی والے الیکٹران اسپن کی موجودگی کی ضرورت ہوتی ہے اور جوہری گھماؤ پر اضافی شور پیدا ہوتا ہے۔ نئے نقطہ نظر کے لئے، محققین نے اس حقیقت کا فائدہ اٹھایا کہ بہت سے نیوکللیوں میں ایک برقی کواڈروپول ہوتا ہے، جو ماحول کے ساتھ برقی جوہری کواڈروپولر تعامل کا باعث بنتا ہے۔ یہ تعامل روشنی سے متاثر ہو سکتا ہے تاکہ خود نیوکلئس کی حالت کو تبدیل کیا جا سکے۔

    لی کا کہنا ہے کہ \”جوہری اسپن عام طور پر بہت کمزور تعامل کرتا ہے۔ \”لیکن اس حقیقت کو استعمال کرتے ہوئے کہ کچھ نیوکلی میں الیکٹرک کواڈروپول ہوتا ہے، ہم اس سیکنڈ آرڈر، نان لائنر آپٹیکل اثر کو آمادہ کر سکتے ہیں جو براہ راست نیوکلیئر سپن سے جوڑتا ہے، بغیر کسی انٹرمیڈیٹ الیکٹران اسپن کے۔ یہ ہمیں نیوکلیئر سپن میں براہ راست ہیرا پھیری کرنے کی اجازت دیتا ہے۔\”

    دیگر چیزوں کے علاوہ، یہ مواد کے آاسوٹوپس کی درست شناخت اور یہاں تک کہ نقشہ سازی کی بھی اجازت دے سکتا ہے، جبکہ رامن سپیکٹروسکوپی، جو کہ مشابہ طبیعیات پر مبنی ایک اچھی طرح سے قائم شدہ طریقہ ہے، مواد کی کیمسٹری اور ساخت کی شناخت کر سکتی ہے، لیکن آاسوٹوپس نہیں۔ محققین کا کہنا ہے کہ اس صلاحیت میں بہت سی ایپلی کیشنز ہوسکتی ہیں۔

    جہاں تک کوانٹم میموری کا تعلق ہے، کوانٹم کمپیوٹنگ کے لیے اس وقت استعمال کیے جانے والے یا سمجھے جانے والے عام آلات میں ہم آہنگی کے اوقات ہوتے ہیں – یعنی ذخیرہ شدہ معلومات کو قابل اعتماد طریقے سے برقرار رکھا جا سکتا ہے – جو کہ ایک سیکنڈ کے چھوٹے حصوں میں ماپا جاتا ہے۔ لیکن نیوکلیئر اسپن سسٹم کے ساتھ، کوانٹم ہم آہنگی کے اوقات گھنٹوں میں ماپا جاتا ہے۔

    ٹیم کا کہنا ہے کہ چونکہ آپٹیکل فوٹوون طویل فاصلے تک مواصلات کے لیے فائبر آپٹک نیٹ ورکس کے ذریعے استعمال کیے جاتے ہیں، اس لیے ان فوٹونز کو براہ راست کوانٹم میموری یا سینسنگ ڈیوائسز میں جوڑنے کی صلاحیت نئے کمیونیکیشن سسٹمز میں اہم فوائد فراہم کر سکتی ہے۔ اس کے علاوہ، اثر طول موج کے ایک سیٹ کو دوسرے میں ترجمہ کرنے کا ایک موثر طریقہ فراہم کرنے کے لیے استعمال کیا جا سکتا ہے۔ سو کا کہنا ہے کہ \”ہم مائیکرو ویو فوٹونز اور آپٹیکل فوٹونز کی نقل و حمل کے لیے جوہری گھماؤ کے استعمال کے بارے میں سوچ رہے ہیں،\” انہوں نے مزید کہا کہ یہ دوسرے طریقوں کے مقابلے میں اس طرح کے ترجمے کے لیے زیادہ مخلصی فراہم کر سکتا ہے۔

    اب تک، کام نظریاتی ہے، لہذا اگلا مرحلہ اصل لیبارٹری کے آلات میں تصور کو نافذ کرنا ہے، شاید سب سے پہلے سپیکٹروسکوپک نظام میں۔ \”یہ اصولی تجربے کے لیے ایک اچھا امیدوار ہو سکتا ہے،\” سو کہتے ہیں۔ وہ کہتے ہیں کہ اس کے بعد، وہ کوانٹم ڈیوائسز جیسے میموری یا نقل و حمل کے اثرات سے نمٹیں گے۔

    اس ٹیم میں MIT میں Changhao Li، Guoqing Wang، Hua Wang، Hao Tang، اور Ariel Barr بھی شامل تھے۔



    Source link